Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Bioconjug Chem ; 35(5): 582-592, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701361

RESUMEN

Antibody-drug conjugates, nanoparticles, and liposomes have been used for anticancer drug delivery. The success of targeted killing of cancer cells relies heavily on the selectivity of the drug delivery systems. In most systems, antibodies or their fragments were used as targeting ligands. In this study, we have investigated the potential for protein-based octomeric chemically self-assembled nanorings (CSANs) to be used for anticancer drug delivery. The CSANs are composed of a DHFR-DHFR fusion protein incorporating an EGFR-targeting fibronectin and the anticancer drug MMAE conjugated through a C-terminal farnesyl azide. The anti-EGFR-MMAE CSANs were shown to undergo rapid internalization and have potent cytotoxicity to cancer cells across a 9000-fold difference in EGFR expression. In addition, anti-EGFR-MMAE CSANs were shown to induce immunological cell death. Thus, multivalent and modular CSANs are a potential alternative anticancer drug delivery platform with the capability of targeting tumor cells with heterogeneous antigen expression while activating the anticancer immune response.


Asunto(s)
Antineoplásicos , Sistemas de Liberación de Medicamentos , Receptores ErbB , Muerte Celular Inmunogénica , Humanos , Muerte Celular Inmunogénica/efectos de los fármacos , Receptores ErbB/metabolismo , Receptores ErbB/inmunología , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Nanoestructuras/química , Nanopartículas/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-38717364

RESUMEN

Statins are used to treat hypercholesterolemia and function by inhibiting the production of the rate-limiting metabolite mevalonate. As such, statin treatment not only inhibits de novo synthesis of cholesterol but also isoprenoids that are involved in prenylation, the post-translational lipid modification of proteins. The immunomodulatory effects of statins are broad and often conflicting. Previous work demonstrated that statins increased survival and inhibited myeloid cell trafficking in a murine model of sepsis, but the exact mechanisms underlying this phenomenon were unclear. Herein we investigated the role of prenylation in chemoattractant responses. We found that simvastatin treatment abolished chemoattractant responses induced by stimulation by C5a and FMLP. The inhibitory effect of simvastatin treatment was unaffected by the addition of either farnesyl pyrophosphate (FPP) or squalene, but was reversed by restoring geranylgeranyl pyrophosphate (GGPP). Treatment with prenyltransferase inhibitors showed that the chemoattractant response to both chemoattractants was dependent on geranylgeranylation. Proteomic analysis of C15AlkOPP-prenylated proteins identified several geranylgeranylated proteins involved in chemoattractant responses, including RHOA, RAC1, CDC42, and GNG2. Chemoattractant responses in THP-1 human macrophages were also geranylgeranylation dependent. These studies provide data that help clarify paradoxical findings on the immunomodulatory effects of statins. Furthermore, they establish the role of geranylgeranylation in mediating the morphologic response to chemoattractant C5a.

3.
Bioconjug Chem ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654427

RESUMEN

Bioorthogonal chemistry has gained widespread use in the study of many biological systems of interest, including protein prenylation. Prenylation is a post-translational modification, in which one or two 15- or 20-carbon isoprenoid chains are transferred onto cysteine residues near the C-terminus of a target protein. The three main enzymes─protein farnesyltransferase (FTase), geranylgeranyl transferase I (GGTase I), and geranylgeranyl transferase II (GGTase II)─that catalyze this process have been shown to tolerate numerous structural modifications in the isoprenoid substrate. This feature has previously been exploited to transfer an array of farnesyl diphosphate analogues with a range of functionalities, including an alkyne-containing analogue for copper-catalyzed bioconjugation reactions. Reported here is the synthesis of an analogue of the isoprenoid substrate embedded with norbornene functionality (C10NorOPP) that can be used for an array of applications, ranging from metabolic labeling to selective protein modification. The probe was synthesized in seven steps with an overall yield of 7% and underwent an inverse electron demand Diels-Alder (IEDDA) reaction with tetrazine-containing tags, allowing for copper-free labeling of proteins. The use of C10NorOPP for the study of prenylation was explored in the metabolic labeling of prenylated proteins in HeLa, COS-7, and astrocyte cells. Furthermore, in HeLa cells, these modified prenylated proteins were identified and quantified using label-free quantification (LFQ) proteomics with 25 enriched prenylated proteins. Additionally, the unique chemistry of C10NorOPP was utilized for the construction of a multiprotein-polymer conjugate for the targeted labeling of cancer cells. That construct was prepared using a combination of norbornene-tetrazine conjugation and azide-alkyne cycloaddition, highlighting the utility of the additional degree of orthogonality for the facile assembly of new protein conjugates with novel structures and functions.

4.
Bioorg Chem ; 147: 107365, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636436

RESUMEN

Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs, and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.

5.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496415

RESUMEN

Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.

6.
Biomacromolecules ; 25(2): 1330-1339, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38254252

RESUMEN

The design of imaging agents with a high fluorine content is necessary for overcoming the challenges of low sensitivity in 19F magnetic resonance imaging (MRI)-based molecular imaging. Chemically self-assembled nanorings (CSANs) provide a strategy to increase the fluorine content through multivalent display. We previously reported an 19F NMR-based imaging tracer, in which case a CSAN-compatible epidermal growth factor receptor (EGFR)-targeting protein E1-dimeric dihydrofolate (E1-DD) was bioconjugated to a highly fluorinated peptide. Despite good 19F NMR performance in aqueous solutions, a limited signal was observed in cell-based 19F NMR using this monomeric construct, motivating further design. Here, we design several new E1-DD proteins bioconjugated to peptides of different fluorine contents. Flow cytometry analysis was used to assess the effect of variable fluorinated peptide sequences on the cellular binding characteristics. Structure-optimized protein, RTC-3, displayed an optimal spectral performance with high affinity and specificity for EGFR-overexpressing cells. To further improve the fluorine content, we next engineered monomeric RTC-3 into CSAN, η-RTC-3. With an approximate eightfold increase in the fluorine content, multivalent η-RTC-3 maintained high cellular specificity and optimal 19F NMR spectral behavior. Importantly, the first cell-based 19F NMR spectra of η-RTC-3 were obtained bound to EGFR-expressing A431 cells, showing a significant amplification in the signal. This new design illustrated the potential of multivalent fluorinated CSANs for future 19F MRI molecular imaging applications.


Asunto(s)
Flúor , Imagen por Resonancia Magnética , Flúor/química , Espectroscopía de Resonancia Magnética , Proteínas , Péptidos , Receptores ErbB/metabolismo
7.
Results Chem ; 62023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38131063

RESUMEN

Pyridoxal 5'-phosphate (PLP) is a ubiquitous and versatile cofactor utilized by numerous enzymes involved in amino acid biosynthetic pathways. Immobilized PLP is a valuable tool to isolate unknown PLP-dependent enzymes in nature or to perform in vitro selection or directed evolution on existing or de novo PLP-dependent enzymes. The C-6 position is preferred for covalent immobilization of PLP because it maintains all important functional groups in their native, unmodified form. Previously reported diazonium derivatization methods for C-6 immobilization utilized an azide linker compound that is hazardous and not readily available. Here we report a safer and more accessible method to synthesize p-diazobenzoyl-derivatized Sepharose 4B using the N-hydroxysuccinimide (NHS) ester chemistry. The derivative was used to immobilize PLP, and the resulting C-6 immobilized PLP had a loading of ~2.6 µmol PLP per mL of resin, comparable to commercially available products of other immobilized cofactors.

8.
RSC Chem Biol ; 4(11): 913-925, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37920391

RESUMEN

Protein lipidation is a post-translational modification that confers hydrophobicity on protein substrates to control their cellular localization, mediate protein trafficking, and regulate protein function. In particular, protein prenylation is a C-terminal modification on proteins bearing canonical motifs catalyzed by prenyltransferases. Prenylated proteins have been of interest due to their numerous associations with various diseases. Chemical proteomic approaches have been pursued over the last decade to define prenylated proteomes (prenylome) and probe their responses to perturbations in various cellular systems. Here, we describe the discovery of prenylation of a non-canonical prenylated protein, ALDH9A1, which lacks any apparent prenylation motif. This enzyme was initially identified through chemical proteomic profiling of prenylomes in various cell lines. Metabolic labeling with an isoprenoid probe using overexpressed ALDH9A1 revealed that this enzyme can be prenylated inside cells but does not respond to inhibition by prenyltransferase inhibitors. Site-directed mutagenesis of the key residues involved in ALDH9A1 activity indicates that the catalytic C288 bears the isoprenoid modification likely through an NAD+-dependent mechanism. Furthermore, the isoprenoid modification is also susceptible to hydrolysis, indicating a reversible modification. We hypothesize that this modification originates from endogenous farnesal or geranygeranial, the established degradation products of prenylated proteins and results in a thioester form that accumulates. This novel reversible prenoyl modification on ALDH9A1 expands the current paradigm of protein prenylation by illustrating a potentially new type of protein-lipid modification that may also serve as a novel mechanism for controlling enzyme function.

9.
J Am Chem Soc ; 145(41): 22287-22292, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37774000

RESUMEN

Protein palmitoylation, with more than 5000 substrates, is the most prevalent form of protein lipidation. Palmitoylated proteins participate in almost all areas of cellular physiology and have been linked to several human diseases. Twenty-three zDHHC enzymes catalyze protein palmitoylation with extensive overlap among the substrates of each zDHHC member. Currently, there is no global strategy to delineate the physiological substrates of individual zDHHC enzymes without perturbing the natural cellular pool. Here, we outline a general approach to accomplish this on the basis of synthetic orthogonal substrates that are only compatible with engineered zDHHC enzymes. We demonstrate the utility of this strategy by validating known substrates and use it to identify novel substrates of two human zDHHC enzymes. Finally, we employ this method to discover and explore conserved palmitoylation in a family of host restriction factors against pathogenic viruses, including SARS-CoV-2.


Asunto(s)
Aciltransferasas , COVID-19 , Humanos , Aciltransferasas/metabolismo , Especificidad por Sustrato , SARS-CoV-2/metabolismo , Proteínas/metabolismo , Lipoilación
10.
Org Lett ; 25(36): 6767-6772, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37669435

RESUMEN

Prenylated proteins contain C15 or C20 isoprenoids linked to cysteine residues positioned near their C-termini. Here we describe the preparation of isoprenoid diphosphate analogues incorporating diazirine groups that can be used to probe interactions between prenylated proteins and other proteins that interact with them. Studies using synthetic peptides and whole proteins demonstrate that these diazirine analogues are efficient substrates for prenyltransferases. Photo-cross-linking experiments using peptides incorporating the diazirine-functionalized isoprenoids selectively cross-link to several different proteins. These new isoprenoid analogues should be broadly useful in the studies of protein prenylation.


Asunto(s)
Diazometano , Difosfatos , Péptidos , Cisteína , Terpenos
11.
Nat Commun ; 14(1): 2761, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179332

RESUMEN

The bactericidal function of neutrophils is dependent on a myriad of intrinsic and extrinsic stimuli. Using systems immunology approaches we identify microbiome- and infection-induced changes in neutrophils. We focus on investigating the Prenylcysteine oxidase 1 like (Pcyox1l) protein function. Murine and human Pcyox1l proteins share ninety four percent aminoacid homology revealing significant evolutionary conservation and implicating Pcyox1l in mediating important biological functions. Here we show that the loss of Pcyox1l protein results in significant reductions in the mevalonate pathway impacting autophagy and cellular viability under homeostatic conditions. Concurrently, Pcyox1l CRISPRed-out neutrophils exhibit deficient bactericidal properties. Pcyox1l knock-out mice demonstrate significant susceptibility to infection with the gram-negative pathogen Psuedomonas aeruginosa exemplified through increased neutrophil infiltrates, hemorrhaging, and reduced bactericidal functionality. Cumulatively, we ascribe a function to Pcyox1l protein in modulation of the prenylation pathway and suggest connections beween metabolic responses and neutrophil functionality.


Asunto(s)
Neutrófilos , Proteínas , Animales , Humanos , Ratones , Ratones Noqueados , Oxidorreductasas/metabolismo , Proteínas/metabolismo
12.
J Biol Chem ; 299(6): 104698, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37059183

RESUMEN

Identifying events that regulate the prenylation and localization of small GTPases will help define new strategies for therapeutic targeting of these proteins in disorders such as cancer, cardiovascular disease, and neurological deficits. Splice variants of the chaperone protein SmgGDS (encoded by RAP1GDS1) are known to regulate prenylation and trafficking of small GTPases. The SmgGDS-607 splice variant regulates prenylation by binding preprenylated small GTPases but the effects of SmgGDS binding to the small GTPase RAC1 versus the splice variant RAC1B are not well defined. Here we report unexpected differences in the prenylation and localization of RAC1 and RAC1B and their binding to SmgGDS. Compared to RAC1, RAC1B more stably associates with SmgGDS-607, is less prenylated, and accumulates more in the nucleus. We show that the small GTPase DIRAS1 inhibits binding of RAC1 and RAC1B to SmgGDS and reduces their prenylation. These results suggest that prenylation of RAC1 and RAC1B is facilitated by binding to SmgGDS-607 but the greater retention of RAC1B by SmgGDS-607 slows RAC1B prenylation. We show that inhibiting RAC1 prenylation by mutating the CAAX motif promotes RAC1 nuclear accumulation, suggesting that differences in prenylation contribute to the different nuclear localization of RAC1 versus RAC1B. Finally, we demonstrate RAC1 and RAC1B that cannot be prenylated bind GTP in cells, indicating that prenylation is not a prerequisite for activation. We report differential expression of RAC1 and RAC1B transcripts in tissues, consistent with these two splice variants having unique functions that might arise in part from their differences in prenylation and localization.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prenilación , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Prenilación de Proteína
13.
Methods Mol Biol ; 2600: 133-153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587095

RESUMEN

Hydrogels are important platform materials for in vitro cellular studies. Mechanistic studies on durotaxis, the directional movement of a cell affected by a spatial gradient of stiffness of the underlying substrate, requires materials such as polyacrylamide, polyethylene glycol, or PDMS, in which the stiffness can be controlled in a spatiotemporal manner. Here, we describe the synthesis of an o-nitrobenzyl-based photocleavable cross-linker and its incorporation into a polyacrylamide hydrogel to render it photoresponsive. Precise control over the physical properties of the gel allows observation of glioblastoma durotaxis under surface stiffness conditions relevant to the actual brain environment.


Asunto(s)
Glioblastoma , Hidrogeles , Humanos , Hidrogeles/química , Matriz Extracelular/metabolismo , Mecanotransducción Celular/fisiología , Polietilenglicoles/análisis , Glioblastoma/metabolismo
14.
Biomacromolecules ; 23(12): 5018-5035, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36416233

RESUMEN

Inspired by the natural intercellular material-transfer process of trans-endocytosis or trogocytosis, we proposed that targeted farnesylated chemically self-assembled nanorings (f-CSANs) could serve as a biomimetic trogocytosis vehicle for engineering directional cargo transfer between cells, thus allowing cell-cell interactions to be monitored and facilitating cell-cell communications. The membranes of sender cells were stably modified by hydrophobic insertion with the targeted f-CSANs, which were efficiently transferred to receiver cells expressing the appropriate receptors by endocytosis. CSAN-assisted cell-cell cargo transfer (C4T) was demonstrated to be receptor specific and dependent on direct cell-cell interactions, the rate of receptor internalization, and the level of receptor expression. In addition, C4T was shown to facilitate cell-to-cell delivery of an apoptosis inducing drug, as wells as antisense oligonucleotides. Taken together, the C4T approach is a potentially versatile biomimetic trogocytosis platform that can be deployed as a macro-chemical biological tool for monitoring cell-cell interactions and engineering cell-cell communications.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Comunicación Celular , Biomimética , Interacciones Hidrofóbicas e Hidrofílicas
15.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232839

RESUMEN

Protein-based conjugates have been extensively utilized in various biotechnological and therapeutic applications. In order to prepare homogeneous conjugates, site-specific modification methods and efficient purification strategies are both critical factors to be considered. The development of general and facile conjugation and purification strategies is therefore highly desirable. Here, we apply a capture and release strategy to create protein conjugates based on Designed Ankyrin Repeat Proteins (DARPins), which are engineered antigen-binding proteins with prominent affinity and selectivity. In this case, DARPins that target the epithelial cell adhesion molecule (EpCAM), a diagnostic cell surface marker for many types of cancer, were employed. The DARPins were first genetically modified with a C-terminal CVIA sequence to install an enzyme recognition site and then labeled with an aldehyde functional group employing protein farnesyltransferase. Using a capture and release strategy, conjugation of the labeled DARPins to a TAMRA fluorophore was achieved with either purified proteins or directly from crude E. coli lysate and used in subsequent flow cytometry and confocal imaging analysis. DARPin-MMAE conjugates were also prepared yielding a construct manifesting an IC50 of 1.3 nM for cell killing of EpCAM positive MCF-7 cells. The method described here is broadly applicable to enable the streamlined one-step preparation of protein-based conjugates.


Asunto(s)
Repetición de Anquirina , Proteínas de Repetición de Anquirina Diseñadas , Aldehídos/metabolismo , Transferasas Alquil y Aril , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas/química
16.
J Med Chem ; 65(20): 13753-13770, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36218371

RESUMEN

Infections by fungal pathogens are difficult to treat due to a paucity of antifungals and emerging resistances. Next-generation antifungals therefore are needed urgently. We have developed compounds that prevent farnesylation of Cryptoccoccus neoformans Ras protein by inhibiting protein farnesyltransferase with 3-4 nanomolar affinities. Farnesylation directs Ras to the cell membrane and is required for infectivity of this lethal pathogenic fungus. Our high-affinity compounds inhibit fungal growth with 3-6 micromolar minimum inhibitory concentrations (MICs), 4- to 8-fold better than Fluconazole, an antifungal commonly used in the clinic. Compounds bound with distinct inhibition mechanisms at two alternative, partially overlapping binding sites, accessed via different inhibitor conformations. We showed that antifungal potency depends critically on the selected inhibition mechanism because this determines the efficacy of an inhibitor at low in vivo levels of enzyme and farnesyl substrate. We elucidated how chemical modifications of the antifungals encode desired inhibitor conformation and concomitant inhibitory mechanism.


Asunto(s)
Transferasas Alquil y Aril , Antifúngicos , Antifúngicos/farmacología , Fluconazol , Transferasas Alquil y Aril/metabolismo , Proteínas ras/metabolismo
17.
ACS Chem Biol ; 17(10): 2945-2953, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36194691

RESUMEN

Photoswitchable lipids have emerged as attractive tools for the optical control of lipid bioactivity, metabolism, and biophysical properties. Their design is typically based on the incorporation of an azobenzene photoswitch into the hydrophobic lipid tail, which can be switched between its trans- and cis-form using two different wavelengths of light. While glycero- and sphingolipids have been successfully designed to be photoswitchable, isoprenoid lipids have not yet been investigated. Herein, we describe the development of photoswitchable analogs of an isoprenoid lipid and systematically assess their potential for the optical control of various steps in the isoprenylation processing pathway of CaaX proteins in Saccharomyces cerevisiae. One photoswitchable analog of farnesyl diphosphate (AzoFPP-1) allowed effective optical control of substrate prenylation by farnesyltransferase. The subsequent steps of isoprenylation processing (proteolysis by either Ste24 or Rce1 and carboxyl methylation by Ste14) were less affected by photoisomerization of the group introduced into the lipid moiety of the substrate a-factor, a mating pheromone from yeast. We assessed both proteolysis and methylation of the a-factor analogs in vitro and the bioactivity of a fully processed a-factor analog containing the photoswitch, exogenously added to cognate yeast cells. Combined, these data describe the first successful conversion of an isoprenoid lipid into a photolipid and suggest the utility of this approach for the optical control of protein prenylation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Farnesiltransferasa/metabolismo , Péptidos/química , Prenilación de Proteína , Feromonas , Lípidos , Esfingolípidos/metabolismo , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
ACS Chem Biol ; 17(10): 2863-2876, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36109170

RESUMEN

Dysregulation of protein prenylation has been implicated in many diseases, including Alzheimer's disease (AD). Prenylomic analysis, the combination of metabolic incorporation of an isoprenoid analogue (C15AlkOPP) into prenylated proteins with a bottom-up proteomic analysis, has allowed the identification of prenylated proteins in various cellular models. Here, transgenic AD mice were administered with C15AlkOPP through intracerebroventricular (ICV) infusion over 13 days. Using prenylomic analysis, 36 prenylated proteins were enriched in the brains of AD mice. Importantly, the prenylated forms of 15 proteins were consistently upregulated in AD mice compared to nontransgenic wild-type controls. These results highlight the power of this in vivo metabolic labeling approach to identify multiple post-translationally modified proteins that may serve as potential therapeutic targets for a disease that has proved refractory to treatment thus far. Moreover, this method should be applicable to many other types of protein modifications, significantly broadening its scope.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Proteómica/métodos , Prenilación de Proteína , Proteínas/metabolismo , Modelos Animales de Enfermedad , Encéfalo/metabolismo , Terpenos/metabolismo
19.
Anal Chem ; 94(33): 11521-11528, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35952372

RESUMEN

Protein prenylation is an essential post-translational modification that plays a key role in facilitating protein localization. Aberrations in protein prenylation have been indicated in multiple disease pathologies including progeria, some forms of cancer, and Alzheimer's disease. While there are single-cell methods to study prenylation, these methods cannot simultaneously assess prenylation and other cellular changes in the complex cell environment. Here, we report a novel method to monitor, at the single-cell level, prenylation and expression of autophagy markers. An isoprenoid analogue containing a terminal alkyne, substrate of prenylation enzymes, was metabolically incorporated into cells in culture. Treatment with a terbium reporter containing an azide functional group, followed by copper-catalyzed azide-alkyne cycloaddition, covalently attached terbium ions to prenylated proteins within cells. In addition, simultaneous treatment with a holmium-containing analogue of the reporter, without an azide functional group, was used to correct for non-specific retention at the single-cell level. This procedure was compatible with other mass cytometric sample preparation steps that use metal-tagged antibodies. We demonstrate that this method reports changes in levels of prenylation in competitive and inhibitor assays, while tracking autophagy molecular markers with metal-tagged antibodies. The method reported here makes it possible to track prenylation along with other molecular pathways in single cells of complex systems, which is essential to elucidate the role of this post-translational modification in disease, cell response to pharmacological treatments, and aging.


Asunto(s)
Azidas , Terpenos , Alquinos/química , Anticuerpos/metabolismo , Azidas/química , Biomarcadores/metabolismo , Prenilación de Proteína , Terbio
20.
Bioconjug Chem ; 33(10): 1771-1784, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35969811

RESUMEN

The homeostasis of cellular activities is essential for the normal functioning of living organisms. Hence, the ability to regulate the fates of cells is of great significance for both fundamental chemical biology studies and therapeutic development. Despite the notable success of small-molecule drugs that normally act on cellular protein functions, current clinical challenges have highlighted the use of macromolecules to tune cell function for improved therapeutic outcomes. As a class of hybrid biomacromolecules gaining rapidly increasing attention, protein conjugates have exhibited great potential as versatile tools to manipulate cell function for therapeutic applications, including cancer treatment, tissue engineering, and regenerative medicine. Therefore, recent progress in the design and assembly of protein conjugates used to regulate cell function is discussed in this review. The protein conjugates covered here are classified into three different categories based on their mechanisms of action and relevant applications: (1) regulation of intercellular interactions; (2) intervention in intracellular biological pathways; (3) termination of cell proliferation. Within each genre, a variety of protein conjugate scaffolds are discussed, which contain a diverse array of grafted molecules, such as lipids, oligonucleotides, synthetic polymers, and small molecules, with an emphasis on their conjugation methodologies and potential biomedical applications. While the current generation of protein conjugates is focused largely on delivery, the next generation is expected to address issues of site-specific conjugation, in vivo stability, controllability, target selectivity, and biocompatibility.


Asunto(s)
Polímeros , Proteínas , Proteínas/química , Polímeros/química , Sustancias Macromoleculares , Oligonucleótidos , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...